

Protocoles & environnement internet

Architecture informatique

http://comem.trucmu.ch/protoenv

Benoît Terradillos | benoit.terradillos@heig-vd.ch

Haute École d'Ingénierie et de Gestion du Canton de Vaud | Département COMEM+

Historique: Blaise Pascal

- Machine d'arithmétique / Roue pascaline
 - En 1642
 - Machine à calculer mécanique

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

2

Historique: Joseph Marie Jacquard

- · Métiers à tisser
 - En 1801
 - Données stockées sur des cartes perforées
 - Automatisation du processus de tissage

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

Historique: Charles Babbage

- · Machine analytique
 - En 1837
 - Association des concepts de Pascal et Jacquard
 - Aucun exemplaire fonctionnel n'a pu être construit

COMEM+	Technologies des médias ProtoEnv Architecture informatiqu

Historique : Ada Lovelace

- Premier programme «informatique»
 - En 1843
 - Calcul des nombres de Bernouilli
 - Algorithme complexe

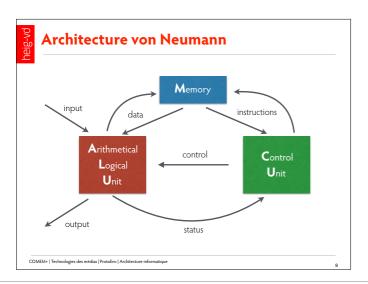
COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

						Date				Wasting Variables									Book Variables			
States of Operation	Natural Spenden	Fundation Variation and story to the story t	F(0====================================	/Ossa [m]	17000-	1,0000 []	20000	£0000 []	50000	\$0000 [1,0000	Nose [Joseph Company	P**0**	1	SH S	1		\$0000 E			
			7.		- 1 (+1 - 4	111				10								$-\frac{1}{2}\cdot\frac{p_{2}-1}{p_{2}+1}-b_{2}$				
	+ × +		Y		$-\frac{p_1}{2} \cdot \frac{p_2}{2} - p_3 s_1$ $-\frac{1}{2} \cdot \frac{p_4}{2s+1} + p_1 \cdot \frac{p_4}{2}$ $-\frac{1}{2} \cdot \frac{p_4}{2s+1} + p_5 \cdot \frac{p_4}{2}$											7 - h	1. 27 - N. N.	(-) limi(+1,1)				
		70, -71 70, +71 70, -72 70, -73 70, -73 70, -73 70, -73 70, -73			$\begin{array}{c} 2 = 1 \\ 2 = 1 \\ 3 - 2 \\ 2 - 2 \\ 2 - 2 \\ 3 - 2 \\ 2 - 2 \\ 3 - 2 \\$					1111111111	1 - 1 - 1 - 1 - 1 - 1					y-date.	**	(4==4==4)				
		7.0		1000	to a Yandah cont				-		1:											*

ENIAC


- · Ordinateur électronique décimal
 - En 1946
 - Programmé par fils et interrupteurs
 - Branchements conditionnels

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique


EDVAC

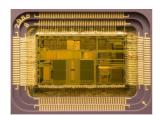
- · Ordinateur électronique binaire
 - En 1951
 - Programme stocké en mémoire
 - Architecture von Neuman

Évolution technologique

Composants principaux

- Bus
- Processeur
- Horloge
- Mémoires
- · Périphériques d'entrées & sorties

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique


Bus, carte mère et horloge

- · Circuits de base
 - Interconnexions
 - Bus (data, address, control)
- Périphériques
 - Son, vidéo, réseau
- · Relie tous les composants principaux

Processeur

- Premier microprocesseur: intel 4004 (1971)
- Différentes types: RISC, CISC, DSP
- Plusieurs familles:
 - x86 (Intel, AMD, Via)
 - PowerPC (Motorola, IBM)
 - ARM (Appareils mobiles)

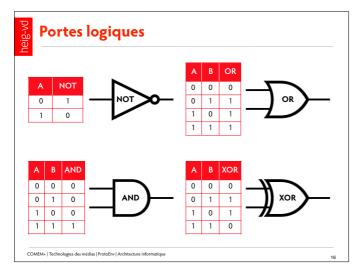
COMEM+ | Technologies des médias | ProtoEnv | Architecture informatiqu

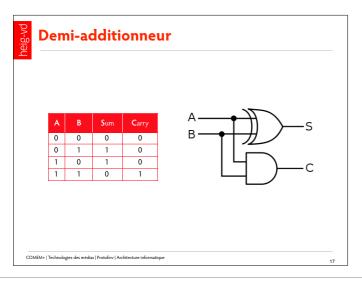
année	nom	adressage	finesse	transistors	vitesse	mips
1971	4004	4 bits	10 000	2 300	0.74	0.092
1972	8008	8 bits	10 000	3 500	0.5	0.092
1974	8080	8 bits	6 000	4 500	2	0.29
1978	8086	16 bits	3 000	29 000	5	0.33
1982	80186	16 bits	3 000	55 000	6	1
1982	80286	24 bits	1 500	134 000	12.5	1.28
1985	80386	32 bits	1 000	275 000	16	2.15
1989	80486	32 bits	1 000	1 200 000	25	8.7
1993	Pentium	32 bits	800	3 100 000	100	188
1997	Pentium II	32 bits	350	7 500 000	200	541
1999	Pentium III	32 bits	250	9 500 000	600	2 054
2000	Pentium 4	32 bits	180	42 000 000	1 500	1 700
2004	Prescott	32 bits	90	125 000 000	3 200	9 726
2006	Conroe	64 bits	65	291 000 000	3 000	22 000
2008	Bloomfield	64 bits	45	781 000 000	2 933	27 079
2010	Gulftown	64 bits	32	1 170 000 000	3 333	147 600
2012	Ivy Bridge	64 bits	22	1 400 000 000	3 200	113 093
2014	Haswell	64 bits	22	4 310 000 000	3 000	238 310
2016	Skylake	64 bits	14	7 200 000 000	2 800	

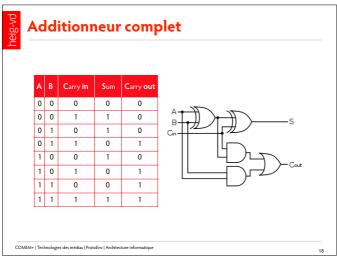
heig-vd

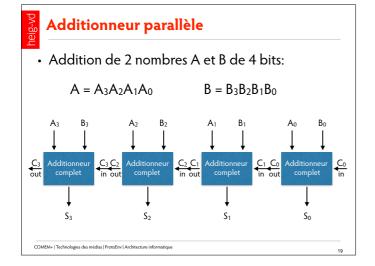
Principes de base

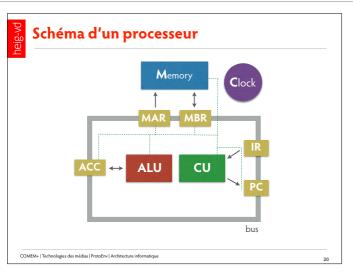
- · Calculs sur nombres binaires
- Arithmétique binaire
- Portes logiques: NOT, AND, OR, XOR
- Demi-additionneur
- Additionneur

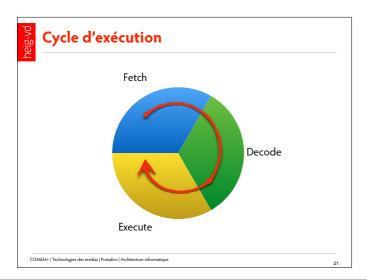

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique


eig-vd


Arithmétique binaire


- · Calculs avec la base 2
- Quelques avantages:
 - électronique simplifiée pour gérer tous les cas
 - division/multiplication par deux


COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique



Instructions

• Briques de bases des programmes:

- Arithmétiques: ADD, SUB

- Transfert de données: LDA, STA, INP, OUT, OTC

- Contrôle: HLT, BRA, BRZ, BRP

- Syntaxique: **DAT**

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

22

Mémoires

- Stockage de caractères
- Capacité (megabytes, gigabytes, terabytes)
- Temps d'accès (nano, micro, milli -secondes)
- · Stockage permanent ou pas
- · Lecture seule ou lecture/écriture
- Fixe ou amovible

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatiqu

23

Registre

- Accès «instantané»: ~1 nanoseconde (10-9)
- Capacité: quelques octets (8, 16, 32, 64 bits)
- Composant du processeur
- Stockent les valeurs temporaires lors du fonctionnement du processeur
- Généraux (Accumulateur) ou spéciaux (IR, PC, MAR, MBR)

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

Mé

Mémoire cache

- Accès très rapide: ~10 nanosecondes (10-8)
- · Capacité: quelques Mo
- Plus rapide que la RAM et utilisé pour stocker les données/instructions récemment utilisées.
- Deux types:
 - L1 (Level 1) cache interne, intégré au processeur
 - L2 (Level 2) cache externe, intégré à la carte mère

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatiq

25

Mémoire morte (ROM)

- Accès assez rapide: ~100 nanosecondes (10⁻⁷)
- · Capacité: quelques dizaines de Mo
- Contient le BIOS ou EFI, soudé sur la carte mère
- Stockage permanent sans alimentation
- EPROM: reprogrammable

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

26

Mémoire vive (RAM)

- Accès assez rapide: ~100 nanosecondes (10⁻⁷)
- Capacités: 2Go, 4Go, 8Go, 16Go, 32Go
- · Sans alimentation: perte d'infos
- · Dépendant de la carte mère
- Options:
 - ECC détection d'erreurs
 - Mémoire cache rapide

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

27

SSD (solid-state drive)

- Accès rapide: ~10 microsecondes (10-5)
- Capacités: 128Go, 256Go, 512Go, 1To, 2To
- Stockage permanent (flash)
- Transportable
- SLC / MLC
- Trim

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

eig-vd

Formats de stockage

- Formats de disques: MBR, APT, GPT
- MBR est le format historique:
 - Limité par le nombre de partitions (4 primaires)
 - Hérité des systèmes de type DOS IBM/PC
- · Systèmes de fichiers:
 - Windows: FAT32, NTFS, exFAT
 - Mac: HFS+, APFS, ZFS
 - Linux: Ext4, brtfs, ReiserFS

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

30

Entrées & Sorties

- Relier le CPU avec des périphériques externes
- Plusieurs connectiques:
 - ATA (parallèle),SATA (série)
 - RS232, SCSI, USB, FireWire, Ethernet, Thunderbolt,
 - VGA, DVI, HDMI, DisplayPort, Component

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatique

31

Sources

- Les communications Collection "Le monde des ordinateurs", Éditions Time-Life (ISBN 2-7344-405-2)
- Wikipedia

COMEM+ | Technologies des médias | ProtoEnv | Architecture informatiqu